Processing math: 0%

Wednesday, April 13, 2011

Liouville Function - Introduction

The Liouville function, after Joseph Liouville, is defined for n=pa11pa22... as
interpreted so that λ(1)=1.  It is quite obvious that
This, coupled with the fact that the Liouville function is completely multiplicative (see below), we have
 

Question
Prove that the Liouville function is completely multiplicative i.e.
for all integers m and n (not necessarily coprime).
Solution:-
   Let p1,p2,...,pk be the list of primes appearing in m and/or n. Write m=p1a1p2a2...pkak and n=p1b1p2b2...pkbk, in which any of the non-negative integers a1,a2,...,ak  and b1,b2,...,bk  can be zero.  Then
                     mn=p1a1+b1p2a2+b2...pkak+bk
Consequently
   λ(mn)=(-1)(a1+b1)+(a2+b2)+...+(ak+bk)
            =(-1)(a1+a2+...+ak)+(b1+b2+...+bk)
            =(-1)a1+a2+...+ak(-1)b1+b2+...+bk
            =λ(m)λ(n)
[End]


More about the Liouville function here, and a result involving Möbius Inversion function here.

No comments:

Post a Comment

Comment répondez vous?

as interpreted so that \λ(1)x3d1...','featuredIma':'hps:/lh3.ggusercontent.comblogrimgpryAEn0kuyLMU3O7X6AFMXxPhbyxdwVS0DRXHvFjKHqTzT8r2xEBnGJdXdYPU8m11lnXeqA--7gQPQN25pXGpDjfdPJeEY7sIqoriHYl9RIhV5oqQWCE4Mw6fNEYluviKTiNu1jFRZ43xbnCU7pNutq1xeBxaArm6-0SRjP','url':'hp:/fouque.blogspot.com2011/04liouvil-function-roduction.html','type':'item','isSgItem':true,'isMt̲ipItems':false,'isError':false,'isPa':false,'isPost':true,'isHomepa':false,'isArχve':false,'isLabelSearch':false,'postId':2209020589324119518}}]);WidtManar.RegisterWidt('NavV¯iew',wWidtInfo('Nav1¯','nav'¯,document.tEmentById('Nav1¯'),{},'displayModeFl̲'));WidtManar.RegisterWidt('HeaderView',wWidtInfo('Header1','header',document.tEmentById('Header1'),{},'displayModeFl̲'));WidtManar.RegisterWidt('BlogView',wWidtInfo('Blog1','ma',document.tEmentById('Blog1'),{'cmtInteractionsEnabd':false,'lightbEnabd':true,'lightbMode̲Url':'hps:/www.blogr.comstaticv1jsb2721683219-lbx_engb.js','lightbCssUrl':'hps:/www.blogr.comstaticv1v-css1964470060-lightbbund.css'},'displayModeFl̲'));WidtManar.RegisterWidt('AdSenseView',wWidtInfo('AdSense1','side-¯right-1',document.tEmentById('AdSense1'),{},'displayModeFl̲'));WidtManar.RegisterWidt('FollowersView',wWidtInfo('Followers1','side-¯right-1',document.tEmentById('Followers1'),{},'displayModeFl̲'));WidtManar.RegisterWidt('BlogArχveView',wWidtInfo('BlogArχve1','side-¯right-1',document.tEmentById('BlogArχve1'),{'languaDirection':'<r','loadgMessa':'Loadgx26hellip;'},'displayModeFl̲'));WidtManar.RegisterWidt('ProfiView',wWidtInfo('Profi1','side-¯right-1',document.tEmentById('Profi1'),{},'displayModeFl̲'));WidtManar.RegisterWidt('HTMLView',wWidtInfo('HTML1','side-¯right-1',document.tEmentById('HTML1'),{},'displayModeFl̲'));WidtManar.RegisterWidt('HTMLView',wWidtInfo('HTML2','side-¯right-1',document.tEmentById('HTML2'),{},'displayModeFl̲'));WidtManar.RegisterWidt('AributionView',wWidtInfo('Aribution1','fter-3',document.tEmentById('Aribution1'),{},'displayModeFl̲'));