The Liouville function, after Joseph Liouville, is defined for ` n=p_1^{a_1}p_2^{a_2}...p_k^{a_k} ` as
interpreted so that ` \lambda(1)=1 `. It is quite obvious that
This, coupled with the fact that the Liouville function is completely multiplicative (see below), we have
Question
Prove that the Liouville function is completely multiplicative i.e.
for all integers m and n (not necessarily coprime).
Solution:-
Let ` p_1,p_2,...,p_k ` be the list of primes appearing in m and/or n. Write ` m=p_1^{a_1}p_2^{a_2}...p_k^{a_k} ` and ` n=p_1^{b_1}p_2^{b_2}...p_k^{b_k} `, in which any of the non-negative integers ` a_1,a_2, ..., a_k ` and ` b_1,b_2, ..., b_k ` can be zero. Then
` mn=p_1^{a_1+b_1}p_2^{a_2+b_2}...p_k^{a_k+b_k} `
Consequently
` \lambda(mn)=(-1)^{(a_1+b_1)+(a_2+b_2)+...+(a_k+b_k)} `
` =(-1)^{(a_1+a_2+...+a_k)+(b_1+b_2+...+b_k)} `
` =(-1)^{a_1+a_2+...+a_k}(-1)^{b_1+b_2+...+b_k} `
` =\lambda(m)\lambda(n) `
[End]
More about the Liouville function here, and a result involving Möbius Inversion function here.
No comments:
Post a Comment
Comment répondez vous?