While considering the summatory function of the Liouville Function, we found that
which takes the value of 1 when n is a perfect square and 0 otherwise. The following question was given as a challenge and we present its solution in this article.
Question
Find
Solution:-
From
` \sum_{d|n}\lambda(d)=\bb{1}_\text{PerfectSquare}(n) `
using the Möbius Inversion formula, we have
` \sum_{d|n}\mu(\frac{n}{d})\bb{1}_\text{PerfectSquare}(d)=\lambda(n) `
The summands will be zero except when ` d=D^2 `. Hence we get
` \sum_{D^2|n}\mu(\frac{n}{D^2}) =\lambda(n) `
[End]
Wednesday, April 13, 2011
Möbius Inversion with Liouville Function
This article concerns Möbius Inversion with the Liouville Function. For ` n=p_1^{a_1}p_2^{a_2}...p_k^{a_k} `, the number of distinct prime factors of n is
Question
(i) Prove that
(ii) Hence show that
Solution:-
(i) Note that ` \mu(d)=0 ` for divisors d containing any prime power of index 2 or higher. We only need to consider divisors of the form ` d=p_{i_1}p_{i_2}...p_{i_h} `, where ` h = 0` is interpreted as ` d=1 `.
` \sum_{d|n}\mu(d)\lambda(d) `
= ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} \mu(p_{i_1}p_{i_2}...p_{i_h})\lambda(p_{i_1}p_{i_2}...p_{i_h}) `
= ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} (-1)^h(-1)^{1+1+...+1} ` (where 1+1+...+1 has h copies of 1)
= ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} (-1)^{2h} ` = ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} 1 ` = ` \sum_{h=0}^{k}((k),(h)) `
= ` 2^k ` = ` 2^{\omega(n)} `
(ii) Recall that ` \lambda(\frac{n}{d})=\frac{\lambda(n)}{\lambda(d)}=\lambda(n)\lambda(d) `
From the result in part (i) we multiply both sides by ` \lambda(n) ` to get
` \sum_{d|n}\mu(d)\lambda(n)\lambda(d)= \lambda(n)2^{\omega(n)} `
` \sum_{d|n}\mu(d)\lambda(\frac{n}{d})= \lambda(n)2^{\omega(n)} `
Treating this as the "Möbius Inversed" formula, the "original" formula is
` \sum_{d|n}\lambda(d)2^{\omega(d)}= \lambda(n) `
Hence
` \sum_{d|n}\lambda(\frac{n}{d})2^{\omega(d)} ` = ` \sum_{d|n}\lambda(n)\lambda(d)2^{\omega(d)} ` = ` \lambda(n)\cdot\sum_{d|n}\lambda(d)2^{\omega(d)} `
= ` \lambda(n)\cdot\lambda(n) ` = ` \lambda(n)^2 ` = ` 1 `
[End]
Question
(i) Prove that
(ii) Hence show that
Solution:-
(i) Note that ` \mu(d)=0 ` for divisors d containing any prime power of index 2 or higher. We only need to consider divisors of the form ` d=p_{i_1}p_{i_2}...p_{i_h} `, where ` h = 0` is interpreted as ` d=1 `.
` \sum_{d|n}\mu(d)\lambda(d) `
= ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} \mu(p_{i_1}p_{i_2}...p_{i_h})\lambda(p_{i_1}p_{i_2}...p_{i_h}) `
= ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} (-1)^h(-1)^{1+1+...+1} ` (where 1+1+...+1 has h copies of 1)
= ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} (-1)^{2h} ` = ` \sum_{h=0}^{k}\sum_{p_{i_1},p_{i_2},...,p_{i_h}} 1 ` = ` \sum_{h=0}^{k}((k),(h)) `
= ` 2^k ` = ` 2^{\omega(n)} `
(ii) Recall that ` \lambda(\frac{n}{d})=\frac{\lambda(n)}{\lambda(d)}=\lambda(n)\lambda(d) `
From the result in part (i) we multiply both sides by ` \lambda(n) ` to get
` \sum_{d|n}\mu(d)\lambda(n)\lambda(d)= \lambda(n)2^{\omega(n)} `
` \sum_{d|n}\mu(d)\lambda(\frac{n}{d})= \lambda(n)2^{\omega(n)} `
Treating this as the "Möbius Inversed" formula, the "original" formula is
` \sum_{d|n}\lambda(d)2^{\omega(d)}= \lambda(n) `
Hence
` \sum_{d|n}\lambda(\frac{n}{d})2^{\omega(d)} ` = ` \sum_{d|n}\lambda(n)\lambda(d)2^{\omega(d)} ` = ` \lambda(n)\cdot\sum_{d|n}\lambda(d)2^{\omega(d)} `
= ` \lambda(n)\cdot\lambda(n) ` = ` \lambda(n)^2 ` = ` 1 `
[End]
Liouville Function, Summatory of
We introduced the Liouville function here. The summatory function of ` f(n) ` is defined as
In this post, we examine the summatory function of the Liouville function.
Question
Prove that
Solution:-
Note that for ` n=p^a ` where p is a prime number,
` \sum_{d|n}\lambda(d) ` = ` \sum_{j=0}^a \lambda(p^j) ` = ` \sum_{j=0}^a (-1)^j `
= ` \frac{1\cdot(1-(-1)^{a+1})}{1-(-1)}` = ` \frac{1-(-1)^{a+1}}{2} `
= ` \bb{1}_\text{even}(a) ` = ` {(1,\text{if }a\text{ is even}),(0,\text{if }a\text{ is odd}):} ` ("Even indicator function")
Hence for ` n=p_1^{a_1}p_2^{a_2}...p_k^{a_k} `
` \sum_{d|n}\lambda(d) ` = ` \sum_{i_1,i_2,...,i_k}\lambda(p_1^{i_1}p_2^{i_2}...p_k^{i_k}) ` = ` \sum_{i_1,i_2,...,i_k}\lambda(p_1^{i_1})\lambda(p_2^{i_2})...\lambda(p_k^{i_k}) `
= ` \sum_{i_1=0}^{a_1}\lambda(p_1^{i_1})\sum_{i_2=0}^{a_2}\lambda(p_2^{i_2})...\sum_{i_1=0}^{a_k}\lambda(p_k^{i_k}) `
= ` \bb{1}_\text{even}(a_1)\bb{1}_\text{even}(a_2)...\bb{1}_\text{even}(a_k) `
= ` {(1,\text{if }\forall i\text{ }a_i\in2ZZ),(0,\text{otherwise}):} ` = ` {(1,\text{if }n\text{ is a perfect square}),(0,\text{otherwise}):} `
Challenge: Find ` \sum_{D^2|n}\mu(\frac{n}{D^2}) `, where ` \mu() ` is the Möbius function. Solution here.
In this post, we examine the summatory function of the Liouville function.
Question
Prove that
Solution:-
Note that for ` n=p^a ` where p is a prime number,
` \sum_{d|n}\lambda(d) ` = ` \sum_{j=0}^a \lambda(p^j) ` = ` \sum_{j=0}^a (-1)^j `
= ` \frac{1\cdot(1-(-1)^{a+1})}{1-(-1)}` = ` \frac{1-(-1)^{a+1}}{2} `
= ` \bb{1}_\text{even}(a) ` = ` {(1,\text{if }a\text{ is even}),(0,\text{if }a\text{ is odd}):} ` ("Even indicator function")
Hence for ` n=p_1^{a_1}p_2^{a_2}...p_k^{a_k} `
` \sum_{d|n}\lambda(d) ` = ` \sum_{i_1,i_2,...,i_k}\lambda(p_1^{i_1}p_2^{i_2}...p_k^{i_k}) ` = ` \sum_{i_1,i_2,...,i_k}\lambda(p_1^{i_1})\lambda(p_2^{i_2})...\lambda(p_k^{i_k}) `
= ` \sum_{i_1=0}^{a_1}\lambda(p_1^{i_1})\sum_{i_2=0}^{a_2}\lambda(p_2^{i_2})...\sum_{i_1=0}^{a_k}\lambda(p_k^{i_k}) `
= ` \bb{1}_\text{even}(a_1)\bb{1}_\text{even}(a_2)...\bb{1}_\text{even}(a_k) `
= ` {(1,\text{if }\forall i\text{ }a_i\in2ZZ),(0,\text{otherwise}):} ` = ` {(1,\text{if }n\text{ is a perfect square}),(0,\text{otherwise}):} `
Challenge: Find ` \sum_{D^2|n}\mu(\frac{n}{D^2}) `, where ` \mu() ` is the Möbius function. Solution here.
Liouville Function - Introduction
The Liouville function, after Joseph Liouville, is defined for ` n=p_1^{a_1}p_2^{a_2}...p_k^{a_k} ` as
interpreted so that ` \lambda(1)=1 `. It is quite obvious that
This, coupled with the fact that the Liouville function is completely multiplicative (see below), we have
Question
Prove that the Liouville function is completely multiplicative i.e.
for all integers m and n (not necessarily coprime).
Solution:-
Let ` p_1,p_2,...,p_k ` be the list of primes appearing in m and/or n. Write ` m=p_1^{a_1}p_2^{a_2}...p_k^{a_k} ` and ` n=p_1^{b_1}p_2^{b_2}...p_k^{b_k} `, in which any of the non-negative integers ` a_1,a_2, ..., a_k ` and ` b_1,b_2, ..., b_k ` can be zero. Then
` mn=p_1^{a_1+b_1}p_2^{a_2+b_2}...p_k^{a_k+b_k} `
Consequently
` \lambda(mn)=(-1)^{(a_1+b_1)+(a_2+b_2)+...+(a_k+b_k)} `
` =(-1)^{(a_1+a_2+...+a_k)+(b_1+b_2+...+b_k)} `
` =(-1)^{a_1+a_2+...+a_k}(-1)^{b_1+b_2+...+b_k} `
` =\lambda(m)\lambda(n) `
[End]
More about the Liouville function here, and a result involving Möbius Inversion function here.
interpreted so that ` \lambda(1)=1 `. It is quite obvious that
This, coupled with the fact that the Liouville function is completely multiplicative (see below), we have
Question
Prove that the Liouville function is completely multiplicative i.e.
for all integers m and n (not necessarily coprime).
Solution:-
Let ` p_1,p_2,...,p_k ` be the list of primes appearing in m and/or n. Write ` m=p_1^{a_1}p_2^{a_2}...p_k^{a_k} ` and ` n=p_1^{b_1}p_2^{b_2}...p_k^{b_k} `, in which any of the non-negative integers ` a_1,a_2, ..., a_k ` and ` b_1,b_2, ..., b_k ` can be zero. Then
` mn=p_1^{a_1+b_1}p_2^{a_2+b_2}...p_k^{a_k+b_k} `
Consequently
` \lambda(mn)=(-1)^{(a_1+b_1)+(a_2+b_2)+...+(a_k+b_k)} `
` =(-1)^{(a_1+a_2+...+a_k)+(b_1+b_2+...+b_k)} `
` =(-1)^{a_1+a_2+...+a_k}(-1)^{b_1+b_2+...+b_k} `
` =\lambda(m)\lambda(n) `
[End]
More about the Liouville function here, and a result involving Möbius Inversion function here.
Tuesday, April 12, 2011
A Polar Double Integral
` \int_0^{\pi/2}\int_0^{1+\sin\theta}\theta\text{ }r\text{ d}r\text{ d}\theta `
= ` \int_0^{\pi/2}\theta[\frac{1}{2}r^2]_0^{1+\sin\theta}\text{ d}\theta `
= ` \int_0^{\pi/2}\frac{1}{2}\theta(1+\sin\theta)^2\text{ d}\theta `
= ` \frac{1}{2}\int_0^{\pi/2}\theta(1+2\sin\theta+\sin^2\theta)\text{ d}\theta `
= ` \frac{1}{2}\int_0^{\pi/2}\theta(1+2\sin\theta+\frac{1-cos2\theta}{2})\text{ d}\theta `
= ` \frac{1}{2}\int_0^{\pi/2}\theta(\frac{3}{2}+2\sin\theta-\frac{1}{2}cos2\theta)\text{ d}\theta `
= ` \frac{3}{4}\int_0^{\pi/2}\theta\text{ d}\theta + \int_0^{\pi/2}\theta(\sin\theta-\frac{1}{4}cos2\theta)\text{ d}\theta `
= ` \frac{3}{4}[\frac{\theta^2}{2}]_0^{\pi/2} - \int_0^{\pi/2}\theta\frac{\text{d}}{\text{d}\theta}(\cos\theta+\frac{1}{8}sin2\theta)\text{ d}\theta `
= ` \frac{3}{8}\cdot\frac{\pi^2}{4} - [\theta(\cos\theta+\frac{1}{8}sin2\theta)]_0^{\pi/2} + \int_0^{\pi/2}\cos\theta+\frac{1}{8}sin2\theta\text{ d}\theta `
= ` \frac{3\pi^2}{32} - 0 + [\sin\theta-\frac{1}{16}cos2\theta]_0^{\pi/2} `
= ` \frac{3\pi^2}{32} + [(1+\frac{1}{16})-(0-\frac{1}{16})] `
= ` \frac{3\pi^2}{32} + \frac{9}{8} `
Subscribe to:
Posts (Atom)