Processing math: 64%

Monday, March 28, 2011

Möbius Inversion Formula

Möbius Inversion Formula (by August Ferdinand Möbius) states that if Df the summatory function of f
then
where f is an arithmetic function.  This is more like a "formula machine", which, when given an input f, gives you a version of formula as an output (Well, as long as you know what Df is).  μ is the Möbius function.  [ By the way, Möbius was also famous for his Möbius strip. ]  Using Dirichlet Convolutions (* operation), the formula just says that
and since the *-inverse of the 1(n) function is the Möbius function μ(n)
the formula can be proven succinctly as follows.
Proof:     μ*Df
= 
(proven)

Example
For f(n)=φ(n) the Euler totient function, we know that
Hence applying Möbius Inversion we have

i.e.                                     
since φ(n)=(μDφ)(n) =d|nμ(d)Dφ(nd) =d|nμ(d)I(nd)=d|nμ(d)nd

No comments:

Post a Comment

Comment répondez vous?

the summatory function of f then \xa0 where f is an arithmet...', 'featuredImage': 'https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s7S6hFOQn1pAN7yG-40iD77P76By6fTpfD6G0SVwFTae0AmKwpAEIoNiJ5jwq2bQDxKrk1JUvEw0jhqjTmFcOh79JaXYJqdRbvkT7Fa2Hcy8LCpe5WDSOFpOhSvofiCP5TmyVtkPypZ9r0DN1VQaUIsQ', 'url': 'https://lefouque.blogspot.com/2011/03/mobius-inversion-formula.html', 'type': 'item', 'isSingleItem': true, 'isMultipleItems': false, 'isError': false, 'isPage': false, 'isPost': true, 'isHomepage': false, 'isArchive': false, 'isLabelSearch': false, 'postId': 6985172502932330200}}]); _WidgetManager._RegisterWidget('_NavbarView', new _WidgetInfo('Navbar1', 'navbar', document.getElementById('Navbar1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HeaderView', new _WidgetInfo('Header1', 'header', document.getElementById('Header1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogView', new _WidgetInfo('Blog1', 'main', document.getElementById('Blog1'), {'cmtInteractionsEnabled': false, 'lightboxEnabled': true, 'lightboxModuleUrl': 'https://www.blogger.com/static/v1/jsbin/2721683219-lbx__en_gb.js', 'lightboxCssUrl': 'https://www.blogger.com/static/v1/v-css/1964470060-lightbox_bundle.css'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_AdSenseView', new _WidgetInfo('AdSense1', 'sidebar-right-1', document.getElementById('AdSense1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_FollowersView', new _WidgetInfo('Followers1', 'sidebar-right-1', document.getElementById('Followers1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogArchiveView', new _WidgetInfo('BlogArchive1', 'sidebar-right-1', document.getElementById('BlogArchive1'), {'languageDirection': 'ltr', 'loadingMessage': 'Loading\x26hellip;'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_ProfileView', new _WidgetInfo('Profile1', 'sidebar-right-1', document.getElementById('Profile1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML1', 'sidebar-right-1', document.getElementById('HTML1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML2', 'sidebar-right-1', document.getElementById('HTML2'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_AttributionView', new _WidgetInfo('Attribution1', 'footer-3', document.getElementById('Attribution1'), {}, 'displayModeFull'));