... answers to question posed here.
Example 2
For `n=12`, each of the numbers in `\{1,2,...,12\}` belongs to exactly one of the subsets
`S_1 = \{1, 5, 7, 11\}`
`S_2 = \{2, 10\}`
`S_3 = \{3, 9\}`
`S_4 = \{4, 8\}`
`S_6 = \{6\}`
`S_12 = \{12\}`
Each subset is in fact an equivalence class of the relation ~ (where `a~b \Leftrightarrow`
`\gcd(a,12)=\gcd(b,12)`). `S_h` means the equivalence class (or subset) of all the numbers whose highest common factor with `12` is `h`. Now observe
`S_1 = \{1, 5, 7, 11\}`, `\divide 1`, get `\{1, 5, 7, 11\} \subseteq \{1,...,12\}` `\#=\phi(12)`
`S_2 = \{2, 10\}`, `\divide 2`, get `\{1, 5\} \subseteq \{1,...,6\}` `\#=\phi(6)`
`S_3 = \{3, 9\}`, `\divide 3`, get `\{1, 3\} \subseteq \{1,...,4\}` `\#=\phi(4)`
`S_4 = \{4, 8\}`, `\divide 4`, get `\{1, 2\} \subseteq \{1,...,3\}` `\#=\phi(3)`
`S_6 = \{6\}`, `\divide 6`, get `\{1} \subseteq \{1,...,2\}` `\#=\phi(2)`
`S_12 = \{12\}`, `\divide 12`, get `\{1\} \subseteq \{1\}` `\#=\phi(1)`
Hence
`\#S_1 + \#S_2 + \#S_3 + \#S_4 + \#S_6 + \#S_12`
= `\phi(12) + \phi(6) + \phi(4) + \phi(3) + \phi(2) + \phi(1)`
= `4 + 2 + 2 + 2 + 1 + 1`
= 12
No comments:
Post a Comment
Comment répondez vous?