Processing math: 0%

Monday, March 28, 2011

Euler Totient Function

The Euler Totient Function is an arithmetic function defined as

i.e. the number of elements k{1,...  that are coprime with n.

Theorem
    
Proof:- Note that each  kS={1,...,n}  has a highest common factor h=gcd(k,n) with n and of course this is a factor of n.  So each k belongs to a unique subset Sh, and these subsets have no overlapping elements.  In other words S={1,...,n} can be partitioned into a disjoint union
     S=h Sh
Counting the elements, we have
#S    =  h|n#Sh
n    =  h|n#{k:gcd(k,n)=h}
        =  h|n#{k:gcd(k,nh)=1}
        =  h|nφ(nh)
        =  d|nφ(d)
[as h runs through all the divisors of n, d=nh will also run through all the divisors of n]
(proven)
Here is another way to express the formula.

Example 1
For n=10, each of the numbers in {1,2,...,10} belongs to exactly one of the subsets
     S1 ={1,3,7,9}
     S2 ={2,4,6,8}
     S5 ={5}
     S10={10}
 Each subset Sh  is an equivalence class of the relation ~ (where a~ba and b share the same the highest common factor h with 10).  Now observe
     S1 ={1,3,7,9},   ÷ 1, get {1,3,7,9} {1,...,10}  #=φ(10)
     S2 ={2,4,6,8},   ÷ 2, get {1,2,3,4} {1,...,5}   #=φ(5)
     S5 ={5}            ,   ÷ 5, get {1}            {1,...,2}    #=φ(2)
     S10={10}        ,    ÷10, get {1}          {1}              #=φ(1)
Hence
     #S1+#S2+#S5+#S10
=   φ(10)+φ(5)+φ(2)+φ(1)
=   4+4+1+1
=   10

Example 2
Try to work out the example for n=12, and check your work here.

No comments:

Post a Comment

Comment répondez vous?

\xa0 that are coprime with...', 'featuredImage': 'https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tDHcW_9kxQxRtdxVrc8Mpl8OLFdSqYqEbof5b6E9Ujc41p-FLzsrtwqyHA8WlGafR_WoEb89GB7FTuecYsQw1d-uR-p8Af3eTTbtlDUpbUgQgalh5gdT7-hd4OjoxEy5xy3er3Pn1Bug48c22pehxUC1fzjCDPR0ThuQ', 'url': 'http://lefouque.blogspot.com/2011/03/euler-totient-function.html', 'type': 'item', 'isSingleItem': true, 'isMultipleItems': false, 'isError': false, 'isPage': false, 'isPost': true, 'isHomepage': false, 'isArchive': false, 'isLabelSearch': false, 'postId': 3644039422835264401}}]); _WidgetManager._RegisterWidget('_NavbarView', new _WidgetInfo('Navbar1', 'navbar', document.getElementById('Navbar1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HeaderView', new _WidgetInfo('Header1', 'header', document.getElementById('Header1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogView', new _WidgetInfo('Blog1', 'main', document.getElementById('Blog1'), {'cmtInteractionsEnabled': false, 'lightboxEnabled': true, 'lightboxModuleUrl': 'https://www.blogger.com/static/v1/jsbin/3059820580-lbx__en_gb.js', 'lightboxCssUrl': 'https://www.blogger.com/static/v1/v-css/3681588378-lightbox_bundle.css'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_AdSenseView', new _WidgetInfo('AdSense1', 'sidebar-right-1', document.getElementById('AdSense1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_FollowersView', new _WidgetInfo('Followers1', 'sidebar-right-1', document.getElementById('Followers1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogArchiveView', new _WidgetInfo('BlogArchive1', 'sidebar-right-1', document.getElementById('BlogArchive1'), {'languageDirection': 'ltr', 'loadingMessage': 'Loading\x26hellip;'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_ProfileView', new _WidgetInfo('Profile1', 'sidebar-right-1', document.getElementById('Profile1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML1', 'sidebar-right-1', document.getElementById('HTML1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML2', 'sidebar-right-1', document.getElementById('HTML2'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_AttributionView', new _WidgetInfo('Attribution1', 'footer-3', document.getElementById('Attribution1'), {}, 'displayModeFull'));